Regional differences in hyoid muscle activity and length dynamics during mammalian head shaking.

نویسندگان

  • Sarah E Wentzel
  • Nicolai Konow
  • Rebecca Z German
چکیده

The sternohyoid (SH) and geniohyoid (GH) are antagonist strap muscles that are active during a number of different behaviors, including sucking, intraoral transport, swallowing, breathing, and extension/flexion of the neck. Because these muscles have served different functions through the evolutionary history of vertebrates, it is quite likely they will have complex patterns of electrical activity and muscle fiber contraction. Different regions of the SH exhibit different contraction and activity patterns during a swallow. We examined the dynamics of the SH and GH muscles during an unrestrained, and vigorous head shaking behavior in an animal model of human head, neck, and hyolingual movement. A gentle touch to infant pig ears elicited a head shake of several revolutions. Using sonomicrometry and intramuscular EMG, we measured regional (within) muscle strain and activity in SH and GH. We found that EMG was consistent across three regions (anterior, belly, and posterior) of each muscle. Changes in muscle length, however, were more complex. In the SH, mid-belly length-change occurred out-of-phase with the anterior and posterior end regions, but with a zero lag timing; the anterior region shortened before the posterior. In the GH, the anterior region shortened before and out-of-phase with the mid-belly and posterior regions. Head shaking is a relatively simple reflex behavior, yet the underlying patterns of muscle length dynamics and EMG activity are not. The regional complexity in SH and GH, similar to regionalization of SH during swallowing, suggests that these anatomically simple hyoid strap muscles have more complex function than textbooks often suggest.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regional differences in length change and electromyographic heterogeneity in sternohyoid muscle during infant mammalian swallowing.

A complex sling of muscles moves and stabilizes the hyoid bone during many mammalian behaviors. One muscle in this sling, the sternohyoid, is recruited during food acquisition, processing, and swallowing, and also during nonfeeding behaviors. We used synchronous sonomicrometry and electromyography to investigate regional (intramuscular) changes in length and electromyographic (EMG) activity of ...

متن کامل

Regional variation in geniohyoid muscle strain during suckling in the infant pig.

The geniohyoid muscle (GH) is a critical suprahyoid muscle in most mammalian oropharyngeal motor activities. We used sonomicrometry to evaluate regional strain (i.e., changes in length) in the muscle origin, belly, and insertion during suckling in infant pigs, and compared the results to existing information on strain heterogeneity in the hyoid musculature. We tested the hypothesis that during ...

متن کامل

Dynamic change in hyoid muscle length associated with trajectory of hyoid bone during swallowing: analysis using 320-row area detector computed tomography.

Research on muscle activation patterns during swallowing has been limited. Newly developed 320-row area detector computed tomography (320-ADCT) has excellent spatial and temporal resolution, which facilitates identification of laryngopharyngeal structures and quantitative kinematic analysis of pharyngeal swallowing. We investigated muscle activity patterns by observing the changes in length of ...

متن کامل

Interspecific variation in sternohyoideus muscle morphology in clariid catfishes: functional implications for suction feeding.

Depression of the hyoid apparatus plays a crucial role in generating suction, especially in fishes with a dorso-ventrally flattened head shape. It is generally assumed that shortening of the sternohyoideus muscle, which connects the hyoid to the pectoral girdle, contributes to hyoid depression. However, a recent study on the clariid catfish Clarias gariepinus has shown that this muscle does not...

متن کامل

Evolution of muscle activity patterns driving motions of the jaw and hyoid during chewing in Gnathostomes.

Although chewing has been suggested to be a basal gnathostome trait retained in most major vertebrate lineages, it has not been studied broadly and comparatively across vertebrates. To redress this imbalance, we recorded EMG from muscles powering anteroposterior movement of the hyoid, and dorsoventral movement of the mandibular jaw during chewing. We compared muscle activity patterns (MAP) duri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of experimental zoology. Part A, Ecological genetics and physiology

دوره 315 3  شماره 

صفحات  -

تاریخ انتشار 2011